Computing Lower Bounds for the Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming

نویسندگان

  • Mauricio G. C. Resende
  • K. G. Ramakrishnan
  • Zvi Drezner
چکیده

A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the product of the flow and the distance between locations to which the facilities are assigned. Proving optimality of solutions to quadratic assignment problems has been limited to instances of small dimension (n less than or equal to 20), in part because known lower bounds for the QAP are of poor quality. In this paper, we compute lower bounds for a wide range of quadratic assignment problems using a linear programming-based lower bound studied by Drezner (1994). On the majority of quadratic assignment problems tested, the computed lower bound is the new best known lower bound. In 87 percent of the instances, we produced the best known lower bound. On several instances, including some of dimension n equal to 20, the lower bound is tight. The linear programs, which can be large even for moderate values of n, are solved with an interior point code that uses a preconditioned conjugate gradient algorithm to compute the directions taken at each iteration by the interior point algorithm. Attempts to solve these instances using the CPLEX primal simplex algorithm as well as the CPLEX barrier (primal-dual interior point) method were successful only for the smallest instances. The quadratic assignment problem (QAP) can be stated as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

A bi-level linear programming problem for computing the nadir point in MOLP

Computing the exact ideal and nadir criterion values is a very ‎important subject in ‎multi-‎objective linear programming (MOLP) ‎problems‎‎. In fact‎, ‎these values define the ideal and nadir points as lower and ‎upper bounds on the nondominated points‎. ‎Whereas determining the ‎ideal point is an easy work‎, ‎because it is equivalent to optimize a ‎convex function (linear function) over a con...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Robust Quadratic Assignment Problem with Uncertain Locations

 We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...

متن کامل

A New Mathematical Approach based on Conic Quadratic Programming for the Stochastic Time-Cost Tradeoff Problem in Project Management

In this paper, we consider a stochastic Time-Cost Tradeoff Problem (TCTP) in PERT networks for project management, in which all activities are subjected to a linear cost function and assumed to be exponentially distributed. The aim of this problem is to maximize the project completion probability with a pre-known deadline to a predefined probability such that the required additional cost is min...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1995